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ABSTRACT 

AN EXTENSION OF PLANE STRAIN ANALYSIS 

This report reviews the derivation of the governing equations for an 
isotropic and linear elastic material in a state of plane strain, for the 
purpose of extending the Kolosov-Muskhelishvili formulation to cover the 
most general case. Included into the reformulation are axial strain, body 
forces and thermoelastic effects. Boundary conditions and the single- 
valuedness of solutions are also discussed for non-dislocation type problems. 
The present formulation is particularly useful for various types of stress 
analyses of solid propellent rocket motors. 
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AN EXTENSION OF PLANE STRAIN ANALYSIS 

By Kwan Rim and Roger 0. Stafford 

Department of Mechanics and Hydraulics 
The University of Iowa 

Iowa City, Iowa 

SUMMARY 

This report presents a generalization of the equations of linear plane 
strain elasticity of homogeneous isotropic materials. A set of general equa- 
tions , corresponding to the Kolosov-Muskhelishvili formulation, is developed 
by including the effects of body forces , axial and thermal strain. The 
general formulation would be particularly useful for various types of stress 
analyses of solid propellant rocket motors. 

INTRODUCTION 

The main objective of this research project is to perform the elastic 
and viscoelastic analysis of two-dimensional problems with star-shaped 
boundaries by the method of complex variables. The derivation of required 
mapping functions through an application of the Schwarz-Christoffel trans- 
formation was presented in the previous report, NASA CR-192 dated March, 1965. 

The stress analysis of solid propellent rocket motors with star-shaped 
perforation has been carried out by other investigators (ref. 1) using the 
Kolosov-Muskhelishvili formulae of plane elasticity. There now exists a need 
for more general engineering analyses which includes the axial strain, general 
body forces and thermoelastic effects. Inclusion of axial strain removes the 
unnecessary restriction imposed on the axial deformation by the classical 
formulation of plane strain. 

The explicit purpose of this report is to reformulate the general equa- 
tions of plane strain with these additional considerations, yet in such a 
way that the existing plane elasticity solutions may be used in analyzing 
more general problems. This approach offers certain advantages in terms of 
generality and less expenditure of labor. Also discussed in this report are 
the single-valuedness of solutions and the boundary conditions. 



SYMBOLS 

V 
E x' Eyg EZ' c E xy' xz' EYz 
a = ~~(x,y,z) 

u, "9 w 
D, D' 
E, v 
G= E/2(1 + v) 
T(x,y,d 
IJ 
V2 = 4a2/asar 

Cartesian coordinates. 
Complex coordinates, 5 = x + iy. 
Components of stress. 

Body forces. 
Body force potential function. 
Components of strain. 

A Superimposed axial strain. 
Displacement components. 
Complex displacements, D = u + iv. 
Young's modulus of elasticity and Poisson's ratio. 
Shear modulus of rigidity. 
Relative temperature. 
Coefficient of thermal expansion. 

Laplace's operator. 

GENERAL EQUATIONS OF ELASTICITY 

For future reference, the fifteen equations of linear elasticity are 
given under the following groupings (ref. 2). The equations of equilibrium: 

auX aTXy 
5-T+ ay 

a’* +-+F =0 
a2 X 9 

aT a0 aT 
$k-&e+F 

aY Y 
= 0, 

aTxz ar ao 

ax+ 
yz 

ay 
+z+F =O. 

a2 z 

The linear strain-displacement relations: 

(2a) Y 
=au av 

XY ay +axs 

(2b) 
av aw z-t- 

yy~ a2 ay 3 

(2c) 
au aw 

Y XZ =Tpx. 

(la) 

(lb) 

(lc) 

(2d) 

(2e) 

(2f) 



The compatibility conditions: 

2 
a2Ez a ayes -=-- 
axay i az ay 

+*A&], 

a2y xy a2cx 2 
axay 

=-+ a, 
ay2 ax2 

2 2 
&2Y+- 

a2EZ 

az2 ay2 
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(3a) 

(3b) 

(3c) 

(3d) 

(32) 

(3f) 

The total strain, that is, the strain produced by deformation gradients plus 
that of thermal effects is given by 

ci t PT, i = x, Y', Z- 

EQJATIONS OF PLANE STRAIN 

The simplifying assumption of plane problems is that the out-of-plane 
shear stresses are zero. This assumption is also taken here, i.e., 

Y xz = yYz - O* 

Hence, equations (2e) and (2f) require the displacement components to 
satisfy the following equations, 

0 av aw 
=z+F, 0 au aw 

=az+s? 



In the classical theory of plane strain, the normal or axial strain eZ is 
also taken to be zero. Herein the axial strain will be considered to be a 
general function, 

E: z = a(x,y,z). 

By making use of uz expressed in terms of a, T and other stress 
components, 

u z = vbx t uy) + E(a - UT), 

one obtains the following stress-strain relations: 

1 E: 
X 

=-(y - 
E 2G x v(ux + uy) I I 

- va - (1 t v)uT , 3 

t uy) 1 1 - va - (1 t v)uT , 1 

TV 
= Gy 

XY’ 

u 
X 

= &[,l - V)EX t v(cY t a4 - &T , l-2v 

uY = +?&I1 - v)EY t v(ex t a)] - $&T . 

The symbol T denotes the difference in temperature from some reference 
level. 

The body forces are assumed to be derivable from a scalar potential 
function V, i.e., 

z-g, f z-i!, F z-i& 
Y z 

For simplicity, equations (1) through (4) are converted into corres- 
ponding complex representations by using the well-known relations given 
below: 



c =x+iy, i= ci, 

r+r x=2' Y r; -r 
‘= 2i l 

Y 

Figure 1. Coordinate system 

a 
at 

a 

-=ar Z’ 
ax 

a a 
-= i(z-z 9 
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a2 a2 a2 a2 -= -+2-t-, 
araE- aC2 ad as2 

a2 a2 a2 a2 -c--+2-- 
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--2' 
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Complex displacements and body forces in the plane are defined as 

av 
D= u t iv, F= Fx t iF = -2 - . 

Y a? 

Equilibrium equations (la) and (lb) combine into 

$ (ox - uy + 2irxy) t 4 (ax t ay) = 2 z. 
ac 

The c-plane strain-displacement relations become 

(5) 

Q at 
= (ar ar 

&q$, cy = (2 - w+ , - 5) Y 
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a: 
XY 

= i($ - a). 
a? 
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The six compatibility conditions reduce to three equations, 

2 
ac -e 

a2 a2 

ac2 x Y 
+ iyxy) + ,2\cX - cY - iyxy) - 2-3~~ t cY) = 0, 

a3 a3a3 

,a2a + a2 
a52 px - e-y - iYxy) = 0, 

$ [$hx + oy) - +c - EY t iy xy )I = 0. a3 x 

(6b) 

(6~) 

YEajtion (6a) comes from (3d), equation (6b) is obtained by combining 
(3e) and (3f), and equation (6~) results from combining (3a) 

and '(3b). Substitution of the stress-strain relations into the strain- 
displacement relations yields 

E - E 
X Y 

t iy 
XY 

= &u, - uy t2iT ) = 22, 
XY a7 

E: t c 
X Y 

= -(CT, t uy) - 2[va - (1 t v)uT] = et c. 
as 

(7a) 

(7b) 

Since the boundary conditions of elasticity problems are described in 
terms of either stress or displacement components, equations (6) are 
written in terms of stress components by using equations (7). Also equation 
(6a) is written in terms of stress components by using equation (5) and 
its conjugate. These rearrangements result into 

a2bx t u 

s2-C 
(1 t V)PT 1 , 

4a20+1& -Q 
x2 2G a22 X Y 

- 2iT ) = 0, 
XY 

$[(l - 2v)4ux t uy) - a,u -u 
a3 aFX Y 

+ 2iTxy)] 

(8) 

(9) 

(1 t v)uT 1 , (10) 
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EL!& 
a2 

+ Eu - v(ax + ay) 1 , (11) 

(12a) 

(12b) 

Equation (11) comes from (1~). Equation (12a) is the condition for the 
vanishing of out-of-plane shear stresses, and (12b) comes from (2~). 

Disregarding conjugates, equations (5) and (7) through (12) con- 
stitute nine equations which the five unknowns must satisfy. The over- 
determination is caused by the restriction of the deformation to plane 
strain. This over-determination does not occur in simple plane strain as 
a = 0 makes (9) through (12) null equations. Note that if the stress 
components are known, D and w are given by a particular integral of (7) 
and (12). Hence, the basic problem is to find stress components and strain 
a which satisfy (5) and (8) through (111, five equations for three 
unknowns. 

The standard procedure by which the number of equations is reduced by 
one is to define a stress function which automatically satisfies the equilib- 
rium condition. The scalar stress function $I is defined by 

Ox A!+v 
aY2 

9 a29 
ay=z+ 

In complex notation, the stresses are 

ax - Q + 2it = -4a20 
Y XY aT2 

9 

v, Y- a2$ 
XY =-axay’ 

u +a = 4a20+ 2v. 
X Y asaT 

(13) 

Hence the four governing differential equations become 

,, 
ac2 aT2 

= 4’1 - - 29 a2v 

- ’ asa 
+ 2G - va 

a2 
1 

- ’ asaT [ 
- (1 + v)pT] , (14) 

(15) 

3 

- 2v),G& 
3 
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: . .._ 

E&z 
2 

a2 &[(l - 2v)V+EuT-4v* . 
ac aF 3 

(17) 

The problem is now reduced to finding functions # and a which satisfy 
these equations. The boundary conditions are identical to those of the 
simple plane strain theory with the addition that ez = a may be nonzero. 
The displacements D and w are determined by (7) and (12), respectively. 

SOLUTIONS OF PARTICULAR CASES 

To illustrate the generality of these equations, the formal solutions 
of four particular cases will be presented. 

I. Simple plane strain .--Assume that all additional effects are 
zero, i.e., 

Equations (15), (16) and (17) are null and equation (14) becomes the 
governing equation of simple plane strain (ref. 3), 

V2(V2t$) = 0; 

the solution of which may be written as 

where Q and w are analytic functions of the complex variable c. 

II. Plane thermoelasticity.--Take the body force potential V and 
axial strain a to be zero, and assume the temperature T to be independent 
of Z. Again equations (15), (16) and (17) are null and equation (14) 
becomes the governing equation of plane thermoelasticity (ref. 4). 

the formal solution of which may be written as 



where thdr(,new function 
equation.' 

4 
82To 

EIJT -z-P 

w? 
l-v 

TO is a particular integral of the following 

. 

III. Plane strain including c-plane body forces .--Take all additional 
effects to be zero, except the body forces and assume that V. is independent 
of z. Then equations (151, (16) and (17) are satisfied and (14) 
becomes 

4 
a40 = _ (1 - 29 a2v 

a$aYf2 l-v al;as’ 

This equation is identical in form to that of plane thermoelasticity, as 
expected, and the same methods of solution will apply (mf. 5). 

IV. Axial strain superposed on plane strain with thermal effects and 
body forces .--This problem is of considerable significance in the analysis of 
solid propellant rockets, hence the assumptions are tailored to fit the real 
situation as closely as possible. The simplifying assumptions are: 

1. The temperature T is independent of z. 
2. The axial strain a is a function of z only. 

(This will be approximately true for long cylinders.) 
3. The body force potential is of the form 

v= f(?i, a + g(z). 

These restrictions make equations (15) and (16) null, and (14) and (17) 
become 

4 a44 z-(1 ---- - 2v,a% Eu a2T 
a$aif2 ‘1 - 

aa _ (1 
az- -E2v)g . 

Define vO and T 0 to 

v lasay 1 - v , 
ara? 

be particular integrals of the equations 

4 
a2vo 
-= 

arar 
4; 1 tv,f , 

22T 
41-o=- ECIT 

araY 
l-v ’ 

then the biharmonic equation can be integrated directly and 4 may be ex- 
pressed in the following form: 
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I#I = 3 + t$+ w +w+VO + To. 

Also one obtains 

1 a = ( - 2v)g(z) + Eo. E 

Note that the axial strain a depends upon the body force in the axial 
direction only, hence only a constant strain so can be arbitrarily 
specified. 

When the body forces are constant, such as gravitational type forces, 

then V2f = 0. Also, V2T = 0 when there are no heat sources in the domain. 
In this case it would follow that V. and To would not be included in the 
stress function #I. However, since VO and To are harmonic functions, 
their inclusion in the stress function does not violate (14) and is in fact 
required by (7a). Harmonic functions vO and TO vanish from 4 only 
when the body forces and the relative temperature are zero. 

From (7) and (13) one obtains the following expressions for the 
stresses: 

u +CJ 
X Y 

= 1 fG2,:iF + ab+ 2va) - 1 EEiv T = &a29 + 2V, 

aiT ar aF 

ux - 0 + 2iT =4&-4a20. 
Y XY aF aT2 

The displacement D is found by integrating the preceding equations: 

a=- 2 + m(C 1 
ar 

9 m = 4(1 - v)n - vGaS, 

where m is determined from the other stress equation. Hence the expression 
for displacement is given by 

GD = (3 - 4v)Q - CL? - r8 
av, aTo 

- - - - - vGa< . 
ar ar 

The displacement W is found by integrating (12b) and evaluating the 
integration constant from (Sal; 
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w= adz - $3 - 2V)(l - v + 
4(7 l-v 

2v2)g'(z) + w 
0' 

From (12b) it is seen the g'(z) must be a constant. Hence g(z) can be 
a linear function at the most; i.e., the body force in the axial direction 
cannot be mOre than a constant. 

The two most common types of body forces are gravitational and centri- 
fugal forces, and examples are shown below. 

Z 

F = constant 
g 

k . . Y . . 

\ 

FC 
= Ar 

Figure 2. Gravitational and centrifugal body forces. 

The scalar potential functions for these two cases are 

v = 
g 2 ep + rp) - (Fg cos 8)~ , p = eiy , 

vC = -A32 . 

SINGLE-VALUEDNESS AND BOUNDARY CONDITIONS 

The problems of interest here are non-dislocation type, hence the stress 
and displacement components must be single-valued at interior points. The 
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condition for single-valuedness may be written as 

F(8) - F(8 + 271) = [F(C)], = 0, 

where [I, denotes the change in the function during a complete circuit of 
a contour c lying within the body. Therefore, the displacement D and its 
first derivative, and the second and higher derivatives of 41 must satisfy 
this condition. Since a#/ar is related to D, it is assumed to be single- 
valued. Also VO and To and their derivatives up to second order are 

assumed to be single-valued. Explicitly, the equations to be examined for 
single-valuedness are 

D = (3 - 4V)$2 - CT' - 2, E = (3 - 4v)Q - n' 
a3 

z!k 
x2 

= TQ” + (&J”, 2% 
a3E 

= fl’ +ii’, 

where terms assumed to be single-valued are dropped. Since W' must be 
single-valued, the remaining equations yield 

CLIPI, = 0, WC = 0, C(3 - 4v)Q - q = 0. 

The boundary conditions for plane problems are extensively covered in 
the literature (refs. 3, 4, S).. The sign convention adopted here is shown 
below. 

Y 
El n 

-tCk P = Itds, 

2 
M = /(r x t)ds. 

X 

Figure 3. Boundary conditions. 
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The total forces P and M represent the force exerted by region 1 on 
region 2. In canplex notation, the general equations are 

P = kig," + i Jlvdc , 

Substitution of the stress function of example IV into the preceding 
equations yields 

P= 2i 
avo aTo B 

($2 + &$ + 2 + - + -1 
ay 1 J B 

+i 
ar A 

VdT , 
A 

[ 
-B B 

M= r~(s-l’ + ii’) + TO + Tw’ - w - w * + + 1 J V (ydr+ cdr) 
A 

C 
B 

+ -v 9 

A 

The evaluation of P and M over a closed contour yields the remarkably 
simple results, 

P= 8i(l - v)Cfilc 9 M = [rw’ + tw’ - w - iTI 
c ’ 

where single-valuedness conditions have been utilized. 

CONCLUDING REMARKS 

The generality of the plane strain analysis has been extended by re- 
moving one of the basic assumptions, i.e., the vanishing of the axial strain; 
and by including into the re-formulation body forces and thermoelastic 
effects. These additional considerations are some of the important factors' 
which should be included in the refined analysis of solid propellent rocket 
motors. 

The format of the general equations derived in this report has been 
carefully designed to agree with those available in the literature. There- 
fore, the existing solutions of plane strain problems and even their computer 
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programs may be readily modified to include the additional effects discussed 
in this report. _ 

The general equations derived herein have been checked with the first 
order approximation equations of the finite elasticity which were derived 
independently as a special case of the large deformation analysis. They 
agree with each other, as it is expected. The details of the large deforma- 
tion analysis will be presented in a future report. 
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